
STAT0041: Stochastic Calculus

Lecture 2 - Conditional expectation
Lecturer: Weichen Zhao Fall 2024

Key concepts:

• Conditional expectation;

2.1 Basic Definition

Estimate is an important topic in probability and statistic. We consider a random variable ξ on (Ω,F ,P)
and sub event field G of F . If ξ is G -measurable, then the information in G is sufficient to determine the
value of ξ. If ξ is independent of G , then the information in G provides no help in determining the value of
ξ. In the intermediate case, we can use the information in G to estimate but not precisely evaluate ξ. The
conditional expectation of ξ given G is such an estimate.

First we give the basic definition in this lecture.

Definition 2.1 (Conditional expectation) Let (Ω,F ,P) be a probability space, G be a sub event field of
F , X be a integrable random variable (E[|X|] < ∞). The conditional expectation of X given G , denoted
E[X|G ], is any random variable that satisfies

(1) E[X|G ] is G -measumble, and;

(2) ∫
A

E[X|G ](ω) dP(ω) =

∫
A

X(ω) dP(ω), for allA ∈ G . (2.1)

The second property ensures that E[X|G ] is indeed an estimate of X. It gives the same averages as X over
all the sets in G .

Connection to elementary probability. Considering a simple case, let X and Y be two random variables
on (Ω,F ,P) taken values in {x1, x2, . . . , xm} and {y1, y2, . . . , yn}, m,n ∈ N+, respectively. In elementary
probability, conditional probability is defined as

P(X = xi|Y = yj) :=
P(X = xi;Y = yj)

P(Y = yj)
.

Conditional expectation is defined as

E[X|Y = yj ] :=

m∑
i=1

xiP(X = xi;Y = yj).

Using axiomatic language introduced in lecture 1,

E[X|Y = yj ] =

∫
Ω

X(ω)dP(ω|Y = yj) =

∫
R
xdPX(x|Y = yj),
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where PX is distribution of X. We define random variable

E[X|Y ](ω) =
∑

E[X|Y = yj ]1{Y=yj}(ω)

as conditional expectation of X given Y .

Let G = σ(Y ) is the event field generated by Y , we have

σ(Y ) = {{ω : Y (ω) ∈ B} : B ∈ B(R)} = Y −1(B(R)).

In discrete case, σ(Y ) is given by {y1, y2, . . . , yn} of 2n of all possible concatenation sets. Thus E[X|Y ](ω) =∑
E[X|Y = yj ]1{Y=yj}(ω) is σ(Y ) measurable, which satisfies property (1) in definition 2.1.

Moreover, we have∫
{Y=yj}

E[X|Y ]dP = E[X|Y = yj ]P(Y = yj) =
∑
i

xiP(X = xi|Y = yj)P(Y = yj)

=
∑
i

xiP(X = xi;Y = yj) =

∫
{Y=yj}

XdP.

Denote Gj = {Y = yj}, we have
E[E[X|Y ]1Gj ] = E[X1Gj ].

Since for all G ∈ σ(Y ), there exist finite j1, . . . , jk, k ≤ n, s.t. G = Gj1 ∪ · · · ∪ Gjk , that is 1G =
∑

ji
1ji .

Then
E[E[X|Y ]1G] = E[E[X|Y ]

∑
i

1Gji
] =

∑
i

E[E[X|Y ]1Gji
]

=
∑
i

E[X1Gji
] = E[X

∑
i

1Gji
]

= E[X1G].

Thus ∫
G

E[X|Y ]dP =

∫
G

XdP ∀G ∈ σ(Y ),

which implies property (2) in definition 2.1.

Mean squared error. Given two random variables X, Y , a key problem is predicting the value of X from
observation values of Y . (Such as estimating one’s height from foot length). That is finding function f , such
that f(Y ) is closed to X. We usually consider using mean squared error :

E[(X(ω)− f(Y (ω)))2]

to measure the distance between X and f(Y ).

Claim 2.2 Conditional expectation E[X|Y ] is the estimate of X which minimizes the mean squared error,
that is

E[(X − E[X|Y ])2] = inf
f

E[(X − f(Y ))2]

2.2 Geometric intuition

Random variable space with finite second-order moment. We often use two statistical characteristics,
expectation and variance, to describe random phenomena. When a random variable has finite second-order
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moments, its expectation and variance must exist. Therefore, we will learn what kind of mathematical
structure such a class of random variables has.

Denote all random variables on probability space (Ω,F ,P) with finite second-order moment as L2(Ω,F ,P),
satisfies:

(1) linear space: For all ξ, η ∈ L2(Ω,F ,P), a, b ∈ R,

E(aξ + bη)2 ≤ a2Eξ2 + b2Eη2 + 2|ab|E(ξη)

≤ a2Eξ2 + b2Eη2 + 2|ab|
√

Eξ2Eη2

< ∞ ∈ L2(Ω,F ,P).

(2) Inner product structure: For all ξ, η ∈ L2(Ω,F ,P), we define inner product as:

⟨ξ, η⟩ = E(ξη) ≤
√

Eξ2Eη2 < ∞.

Further we have Euclidean distance:

∥ξ − η∥L2 :=
√

⟨ξ − η, ξ − η⟩ =
√
E(ξ − η)2,

which is exactly mean squared error of ξ and η.

Geometric intuition of conditional expectation. Let G be a sub event field of F , X ∈ L2(Ω,F ,P).
It can be proved that L2(Ω,G ,P) is a closed subspace of L2(Ω,F ,P) (reflection question).

Let X be a random variable in L2(Ω,F ,P), E[X|G ] is orthogonal projection of X to the space L2(Ω,G ,P).
That is, for all random variable Y ∈ L2(Ω,G ,P), we have

E[(X − E[X|G ]) · Y ] = 0. (2.2)

In fact, consider Y = 1B , B ∈ G , for every A ∈ G∫
A

E[X|G ](ω)Y (ω)dP(ω) =

∫
A∩B

E[X|G ](ω)dP(ω)

=

∫
A∩B

X(ω)dP(ω)

=

∫
A

X(ω)Y (ω)dP(ω).

Then follow the standard method in measure theory (Indicator function - simple function - non-negative
measurable function - measurable function), Eq.(2.2) holds.

For every Y ∈ L2(Ω,G ,P),

∥X − Y ∥2L2 = ⟨X − Y,X − Y ⟩
= ⟨X − E[X|G ] + (E[X|G ]− Y ), X − E[X|G ] + (E[X|G ]− Y )⟩
= ∥X − E[X|G ]∥2L2+∥E[X|G ]− Y ∥2L2

≥ ∥X − E[X|G ]∥2L2 .

That is
E[(X − E[X|G ])2] = inf

Y ∈L2(Ω,G ,P)
E[(X − Y )2]

Remark 2.3 For X ∈ L2(Ω,G ,P), Hilbert projection theorem implies existence and uniqueness of E[X|G ].



2-4 Lecture 2: Conditional expectation

2.3 Properties of conditional expectation

Proposition 2.4 (Basic properties) Let X and Y

(1) For a, b ∈ R, E[aX + bY |G ] = aE[X|G ] + bE[Y |G ];

(2) If X ≥ Y , then E[X|G ] ≥ E[Y |G ];

If X ≥ 0, then E[X|G ] ≥ 0;

E[|X||G ] ≥ |E[X|G ]|;

(3) ξ is G measurable =⇒ E[ξ|G ] = ξ.

(4) For every X is G measurable, expectation of X and XY are exist, then E[XY |G ] = XE[Y |G ];

(5) E[E[X|G ]] = E[X];

(6) Let G1 ⊂ G2 ⊂ F , then E[E[X|G1]|G2] = E[E[X|G2]|G1] = E[X|G1].


