STAT0041: Stochastic Calculus

Lecture 2 - Conditional expectation

Lecturer: Weichen Zhao Fall 2024

Key concepts:

• Conditional expectation;

2.1 Basic Definition

Estimate is an important topic in probability and statistic. We consider a random variable ξ on (Ω, \mathscr{F}, P) and sub event field $\mathscr G$ of $\mathscr F$. If ξ is $\mathscr G$ -measurable, then the information in $\mathscr G$ is sufficient to determine the value of ξ . If ξ is independent of $\mathscr G$, then the information in $\mathscr G$ provides no help in determining the value of ξ. In the intermediate case, we can use the information in $\mathscr G$ to estimate but not precisely evaluate ξ. The conditional expectation of ξ given $\mathscr G$ is such an estimate.

First we give the basic definition in this lecture.

Definition 2.1 (Conditional expectation) Let (Ω, \mathcal{F}, P) be a probability space, $\mathcal G$ be a sub event field of \mathscr{F}, X be a integrable random variable $\mathbb{E}[|X|] < \infty$). The **conditional expectation** of X given \mathscr{G} , denoted $\mathbb{E}[X|\mathscr{G}]$, is any random variable that satisfies

(1)
$$
\mathbb{E}[X|\mathscr{G}]
$$
 is $\mathscr{G}\text{-}measurable$, and;

(2)

$$
\int_{A} \mathbb{E}[X|\mathscr{G}](\omega) dP(\omega) = \int_{A} X(\omega) dP(\omega), \quad \text{for all } A \in \mathscr{G}.
$$
\n(2.1)

The second property ensures that $\mathbb{E}[X|\mathscr{G}]$ is indeed an estimate of X. It gives the same averages as X over all the sets in \mathscr{G} .

Connection to elementary probability. Considering a simple case, let X and Y be two random variables on (Ω, \mathscr{F}, P) taken values in $\{x_1, x_2, \ldots, x_m\}$ and $\{y_1, y_2, \ldots, y_n\}$, $m, n \in \mathbb{N}^+$, respectively. In elementary probability, conditional probability is defined as

$$
P(X = x_i | Y = y_j) := \frac{P(X = x_i; Y = y_j)}{P(Y = y_j)}.
$$

Conditional expectation is defined as

$$
\mathbb{E}[X|Y = y_j] := \sum_{i=1}^{m} x_i \mathbb{P}(X = x_i; Y = y_j).
$$

Using axiomatic language introduced in lecture 1,

$$
\mathbb{E}[X|Y=y_j] = \int_{\Omega} X(\omega) dP(\omega|Y=y_j) = \int_{\mathbb{R}} x dP_X(x|Y=y_j),
$$

where P_X is distribution of X. We define random variable

$$
\mathbb{E}[X|Y](\omega) = \sum \mathbb{E}[X|Y = y_j] \mathbf{1}_{\{Y = y_j\}}(\omega)
$$

as conditional expectation of X given Y .

Let $\mathscr{G} = \sigma(Y)$ is the event field generated by Y, we have

$$
\sigma(Y) = \{ \{ \omega : Y(\omega) \in B \} : B \in \mathscr{B}(\mathbb{R}) \} = Y^{-1}(\mathscr{B}(\mathbb{R})).
$$

In discrete case, $\sigma(Y)$ is given by $\{y_1, y_2, \ldots, y_n\}$ of 2^n of all possible concatenation sets. Thus $\mathbb{E}[X|Y](\omega) =$ $\sum \mathbb{E}[X|Y=y_j]\mathbf{1}_{\{Y=y_j\}}(\omega)$ is $\sigma(Y)$ measurable, which satisfies property (1) in definition 2.1.

Moreover, we have

$$
\int_{\{Y=y_j\}} \mathbb{E}[X|Y]dP = \mathbb{E}[X|Y=y_j]P(Y=y_j) = \sum_i x_i P(X=x_i|Y=y_j)P(Y=y_j)
$$

$$
= \sum_i x_i P(X=x_i; Y=y_j) = \int_{\{Y=y_j\}} X dP.
$$

Denote $G_j = \{Y = y_j\}$, we have

$$
\mathbb{E}[\mathbb{E}[X|Y]\mathbf{1}_{G_j}]=\mathbb{E}[X\mathbf{1}_{G_j}].
$$

Since for all $G \in \sigma(Y)$, there exist finite j_1, \ldots, j_k , $k \leq n$, s.t. $G = G_{j_1} \cup \cdots \cup G_{j_k}$, that is $\mathbf{1}_G = \sum_{j_i} \mathbf{1}_{j_i}$. Then

$$
\mathbb{E}[\mathbb{E}[X|Y]\mathbf{1}_G] = \mathbb{E}[\mathbb{E}[X|Y]\sum_i \mathbf{1}_{G_{j_i}}] = \sum_i \mathbb{E}[\mathbb{E}[X|Y]\mathbf{1}_{G_{j_i}}]
$$

$$
= \sum_i \mathbb{E}[X\mathbf{1}_{G_{j_i}}] = \mathbb{E}[X\sum_i \mathbf{1}_{G_{j_i}}]
$$

$$
= \mathbb{E}[X\mathbf{1}_G].
$$

Thus

$$
\int_G \mathbb{E}[X|Y]dP = \int_G XdP \quad \forall G \in \sigma(Y),
$$

which implies property (2) in definition 2.1.

Mean squared error. Given two random variables X , Y , a key problem is predicting the value of X from observation values of Y. (Such as estimating one's height from foot length). That is finding function f , such that $f(Y)$ is closed to X. We usually consider using mean squared error:

$$
\mathbb{E}[(X(\omega) - f(Y(\omega)))^2]
$$

to measure the distance between X and $f(Y)$.

Claim 2.2 Conditional expectation $\mathbb{E}[X|Y]$ is the estimate of X which minimizes the mean squared error, that is

$$
\mathbb{E}[(X - \mathbb{E}[X|Y])^2] = \inf_f \mathbb{E}[(X - f(Y))^2]
$$

2.2 Geometric intuition

Random variable space with finite second-order moment. We often use two statistical characteristics, expectation and variance, to describe random phenomena. When a random variable has finite second-order moments, its expectation and variance must exist. Therefore, we will learn what kind of mathematical structure such a class of random variables has.

Denote all random variables on probability space (Ω, \mathscr{F}, P) with finite second-order moment as $L^2(\Omega, \mathscr{F}, P)$, satisfies:

(1) linear space: For all $\xi, \eta \in L^2(\Omega, \mathscr{F}, P)$, $a, b \in \mathbb{R}$,

$$
\mathbb{E}(a\xi + b\eta)^2 \le a^2 \mathbb{E}\xi^2 + b^2 \mathbb{E}\eta^2 + 2|ab|\mathbb{E}(\xi\eta)
$$

\n
$$
\le a^2 \mathbb{E}\xi^2 + b^2 \mathbb{E}\eta^2 + 2|ab|\sqrt{\mathbb{E}\xi^2 \mathbb{E}\eta^2}
$$

\n
$$
< \infty \in L^2(\Omega, \mathcal{F}, P).
$$

(2) Inner product structure: For all $\xi, \eta \in L^2(\Omega, \mathscr{F}, P)$, we define inner product as:

$$
\langle \xi, \eta \rangle = \mathcal{E}(\xi \eta) \le \sqrt{\mathcal{E}\xi^2 \mathcal{E} \eta^2} < \infty.
$$

Further we have Euclidean distance:

$$
\|\xi - \eta\|_{L^2} := \sqrt{\langle \xi - \eta, \xi - \eta \rangle} = \sqrt{\mathcal{E}(\xi - \eta)^2},
$$

which is exactly mean squared error of ξ and η .

Geometric intuition of conditional expectation. Let $\mathscr G$ be a sub event field of $\mathscr F, X \in L^2(\Omega, \mathscr F, P)$. It can be proved that $L^2(\Omega, \mathscr{G}, P)$ is a closed subspace of $L^2(\Omega, \mathscr{F}, P)$ (reflection question).

Let X be a random variable in $L^2(\Omega, \mathscr{F}, P)$, $\mathbb{E}[X|\mathscr{G}]$ is orthogonal projection of X to the space $L^2(\Omega, \mathscr{G}, P)$. That is, for all random variable $Y \in L^2(\Omega, \mathscr{G}, P)$, we have

$$
\mathbb{E}[(X - \mathbb{E}[X|\mathscr{G}]) \cdot Y] = 0. \tag{2.2}
$$

In fact, consider $Y = \mathbf{1}_B$, $B \in \mathscr{G}$, for every $A \in \mathscr{G}$

$$
\int_{A} \mathbb{E}[X|\mathscr{G}](\omega) Y(\omega) dP(\omega) = \int_{A \cap B} \mathbb{E}[X|\mathscr{G}](\omega) dP(\omega)
$$

$$
= \int_{A \cap B} X(\omega) dP(\omega)
$$

$$
= \int_{A} X(\omega) Y(\omega) dP(\omega).
$$

Then follow the standard method in measure theory (Indicator function - simple function - non-negative measurable function - measurable function), Eq.(2.2) holds.

For every $Y \in L^2(\Omega, \mathscr{G}, P)$,

$$
\begin{aligned} \|X - Y\|_{L^2}^2 &= \langle X - Y, X - Y \rangle \\ &= \langle X - \mathbb{E}[X|\mathscr{G}] + (\mathbb{E}[X|\mathscr{G}] - Y), X - \mathbb{E}[X|\mathscr{G}] + (\mathbb{E}[X|\mathscr{G}] - Y) \rangle \\ &= \|X - \mathbb{E}[X|\mathscr{G}] \|_{L^2}^2 + \|\mathbb{E}[X|\mathscr{G}] - Y\|_{L^2}^2 \\ &\ge \|X - \mathbb{E}[X|\mathscr{G}]\|_{L^2}^2. \end{aligned}
$$

That is

$$
\mathbb{E}[(X - \mathbb{E}[X|\mathscr{G}])^2] = \inf_{Y \in L^2(\Omega, \mathscr{G}, \mathcal{P})} \mathbb{E}[(X - Y)^2]
$$

Remark 2.3 For $X \in L^2(\Omega, \mathscr{G}, P)$, Hilbert projection theorem implies existence and uniqueness of $\mathbb{E}[X|\mathscr{G}]$.

2.3 Properties of conditional expectation

Proposition 2.4 (Basic properties) Let X and Y

- (1) For $a, b \in \mathbb{R}$, $\mathbb{E}[aX + bY|\mathscr{G}] = a\mathbb{E}[X|\mathscr{G}] + b\mathbb{E}[Y|\mathscr{G}]$;
- (2) If $X \geq Y$, then $\mathbb{E}[X|\mathscr{G}] \geq \mathbb{E}[Y|\mathscr{G}]$; If $X \geq 0$, then $\mathbb{E}[X|\mathscr{G}] \geq 0$; $\mathbb{E}[|X||\mathscr{G}] \geq |\mathbb{E}[X|\mathscr{G}]|;$
- (3) ξ is $\mathscr G$ measurable $\Longrightarrow E[\xi|\mathscr G]=\xi$.
- (4) For every X is $\mathscr G$ measurable, expectation of X and XY are exist, then $\mathbb E[XY|\mathscr G] = X \mathbb E[Y|\mathscr G]$;
- (5) $\mathbb{E}[\mathbb{E}[X|\mathscr{G}]] = \mathbb{E}[X];$
- (6) Let $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \mathcal{F}$, then $\mathbb{E}[\mathbb{E}[X|\mathcal{G}_1]|\mathcal{G}_2] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}_2]|\mathcal{G}_1] = \mathbb{E}[X|\mathcal{G}_1]$.