STAT0041: Stochastic Calculus

Lecture 2 - Conditional expectation

Lecturer: Weichen Zhao

Key concepts:

• Conditional expectation;

2.1 Basic Definition

Estimate is an important topic in probability and statistic. We consider a random variable ξ on (Ω, \mathscr{F}, P) and sub event field \mathscr{G} of \mathscr{F} . If ξ is \mathscr{G} -measurable, then the information in \mathscr{G} is sufficient to determine the value of ξ . If ξ is independent of \mathscr{G} , then the information in \mathscr{G} provides no help in determining the value of ξ . In the intermediate case, we can use the information in \mathscr{G} to estimate but not precisely evaluate ξ . The conditional expectation of ξ given \mathscr{G} is such an estimate.

First we give the basic definition in this lecture.

Definition 2.1 (Conditional expectation) Let (Ω, \mathscr{F}, P) be a probability space, \mathscr{G} be a sub event field of \mathscr{F} , X be a integrable random variable $(\mathbb{E}[|X|] < \infty)$. The **conditional expectation** of X given \mathscr{G} , denoted $\mathbb{E}[X|\mathscr{G}]$, is any random variable that satisfies

(1)
$$\mathbb{E}[X|\mathcal{G}]$$
 is \mathcal{G} -measumble, and;

(2)

$$\int_{A} \mathbb{E}[X|\mathscr{G}](\omega) \,\mathrm{dP}(\omega) = \int_{A} X(\omega) \,\mathrm{dP}(\omega), \quad \text{for all } A \in \mathscr{G}.$$
(2.1)

The second property ensures that $\mathbb{E}[X|\mathcal{G}]$ is indeed an estimate of X. It gives the same averages as X over all the sets in \mathcal{G} .

Connection to elementary probability. Considering a simple case, let X and Y be two random variables on (Ω, \mathscr{F}, P) taken values in $\{x_1, x_2, \ldots, x_m\}$ and $\{y_1, y_2, \ldots, y_n\}$, $m, n \in \mathbb{N}^+$, respectively. In elementary probability, conditional probability is defined as

$$P(X = x_i | Y = y_j) := \frac{P(X = x_i; Y = y_j)}{P(Y = y_j)}.$$

Conditional expectation is defined as

$$\mathbb{E}[X|Y = y_j] := \sum_{i=1}^m x_i \mathbb{P}(X = x_i; Y = y_j).$$

Using axiomatic language introduced in lecture 1,

$$\mathbb{E}[X|Y=y_j] = \int_{\Omega} X(\omega) dP(\omega|Y=y_j) = \int_{\mathbb{R}} x dP_X(x|Y=y_j),$$

Fall 2024

where P_X is distribution of X. We define random variable

$$\mathbb{E}[X|Y](\omega) = \sum \mathbb{E}[X|Y = y_j] \mathbf{1}_{\{Y = y_j\}}(\omega)$$

as conditional expectation of X given Y.

Let $\mathscr{G} = \sigma(Y)$ is the event field generated by Y, we have

$$\sigma(Y) = \{\{\omega : Y(\omega) \in B\} : B \in \mathscr{B}(\mathbb{R})\} = Y^{-1}(\mathscr{B}(\mathbb{R})).$$

In discrete case, $\sigma(Y)$ is given by $\{y_1, y_2, \ldots, y_n\}$ of 2^n of all possible concatenation sets. Thus $\mathbb{E}[X|Y](\omega) = \sum \mathbb{E}[X|Y = y_j] \mathbf{1}_{\{Y = y_j\}}(\omega)$ is $\sigma(Y)$ measurable, which satisfies property (1) in definition 2.1.

Moreover, we have

$$\int_{\{Y=y_j\}} \mathbb{E}[X|Y] d\mathbf{P} = \mathbb{E}[X|Y=y_j] \mathbf{P}(Y=y_j) = \sum_i x_i \mathbf{P}(X=x_i|Y=y_j) \mathbf{P}(Y=y_j)$$
$$= \sum_i x_i \mathbf{P}(X=x_i;Y=y_j) = \int_{\{Y=y_j\}} X d\mathbf{P}.$$

Denote $G_j = \{Y = y_j\}$, we have

$$\mathbb{E}[\mathbb{E}[X|Y]\mathbf{1}_{G_j}] = \mathbb{E}[X\mathbf{1}_{G_j}].$$

Since for all $G \in \sigma(Y)$, there exist finite j_1, \ldots, j_k , $k \leq n$, s.t. $G = G_{j_1} \cup \cdots \cup G_{j_k}$, that is $\mathbf{1}_G = \sum_{j_i} \mathbf{1}_{j_i}$. Then

$$\mathbb{E}[\mathbb{E}[X|Y]\mathbf{1}_G] = \mathbb{E}[\mathbb{E}[X|Y]\sum_i \mathbf{1}_{G_{j_i}}] = \sum_i \mathbb{E}[\mathbb{E}[X|Y]\mathbf{1}_{G_{j_i}}]$$
$$= \sum_i \mathbb{E}[X\mathbf{1}_{G_{j_i}}] = \mathbb{E}[X\sum_i \mathbf{1}_{G_{j_i}}]$$
$$= \mathbb{E}[X\mathbf{1}_G].$$

Thus

$$\int_{G} \mathbb{E}[X|Y] \mathrm{dP} = \int_{G} X \mathrm{dP} \quad \forall G \in \sigma(Y),$$

which implies property (2) in definition 2.1.

Mean squared error. Given two random variables X, Y, a key problem is predicting the value of X from observation values of Y. (Such as estimating one's height from foot length). That is finding function f, such that f(Y) is closed to X. We usually consider using *mean squared error*:

$$\mathbb{E}[(X(\omega) - f(Y(\omega)))^2]$$

to measure the distance between X and f(Y).

Claim 2.2 Conditional expectation $\mathbb{E}[X|Y]$ is the estimate of X which minimizes the mean squared error, that is

$$\mathbb{E}[(X - \mathbb{E}[X|Y])^2] = \inf_f \mathbb{E}[(X - f(Y))^2]$$

2.2 Geometric intuition

Random variable space with finite second-order moment. We often use two statistical characteristics, expectation and variance, to describe random phenomena. When a random variable has finite second-order

moments, its expectation and variance must exist. Therefore, we will learn what kind of mathematical structure such a class of random variables has.

Denote all random variables on probability space $(\Omega, \mathscr{F}, \mathbf{P})$ with finite second-order moment as $L^2(\Omega, \mathscr{F}, \mathbf{P})$, satisfies:

(1) linear space: For all $\xi, \eta \in L^2(\Omega, \mathscr{F}, \mathbf{P}), a, b \in \mathbb{R}$,

$$\begin{split} \mathbb{E}(a\xi + b\eta)^2 &\leq a^2 \mathbb{E}\xi^2 + b^2 \mathbb{E}\eta^2 + 2|ab| \mathbb{E}(\xi\eta) \\ &\leq a^2 \mathbb{E}\xi^2 + b^2 \mathbb{E}\eta^2 + 2|ab| \sqrt{\mathbb{E}\xi^2 \mathbb{E}\eta^2} \\ &< \infty \in L^2(\Omega, \mathscr{F}, \mathbf{P}). \end{split}$$

(2) Inner product structure: For all $\xi, \eta \in L^2(\Omega, \mathscr{F}, \mathbb{P})$, we define inner product as:

$$\langle \xi, \eta \rangle = \mathcal{E}(\xi\eta) \le \sqrt{\mathcal{E}\xi^2 \mathcal{E}\eta^2} < \infty.$$

Further we have Euclidean distance:

$$\|\xi - \eta\|_{L^2} := \sqrt{\langle \xi - \eta, \xi - \eta \rangle} = \sqrt{\mathbf{E}(\xi - \eta)^2},$$

which is exactly mean squared error of ξ and η .

Geometric intuition of conditional expectation. Let \mathscr{G} be a sub event field of $\mathscr{F}, X \in L^2(\Omega, \mathscr{F}, \mathbb{P})$. It can be proved that $L^2(\Omega, \mathscr{G}, \mathbb{P})$ is a closed subspace of $L^2(\Omega, \mathscr{F}, \mathbb{P})$ (reflection question).

Let X be a random variable in $L^2(\Omega, \mathscr{F}, \mathbf{P})$, $\mathbb{E}[X|\mathscr{G}]$ is orthogonal projection of X to the space $L^2(\Omega, \mathscr{G}, \mathbf{P})$. That is, for all random variable $Y \in L^2(\Omega, \mathscr{G}, \mathbf{P})$, we have

$$\mathbb{E}[(X - \mathbb{E}[X|\mathscr{G}]) \cdot Y] = 0.$$
(2.2)

In fact, consider $Y = \mathbf{1}_B, B \in \mathscr{G}$, for every $A \in \mathscr{G}$

$$\int_{A} \mathbb{E}[X|\mathscr{G}](\omega)Y(\omega)d\mathbf{P}(\omega) = \int_{A\cap B} \mathbb{E}[X|\mathscr{G}](\omega)d\mathbf{P}(\omega)$$
$$= \int_{A\cap B} X(\omega)d\mathbf{P}(\omega)$$
$$= \int_{A} X(\omega)Y(\omega)d\mathbf{P}(\omega).$$

Then follow the standard method in measure theory (Indicator function - simple function - non-negative measurable function - measurable function), Eq.(2.2) holds.

For every $Y \in L^2(\Omega, \mathscr{G}, \mathbf{P})$,

$$\begin{split} \|X - Y\|_{L^2}^2 &= \langle X - Y, X - Y \rangle \\ &= \langle X - \mathbb{E}[X|\mathscr{G}] + (\mathbb{E}[X|\mathscr{G}] - Y), X - \mathbb{E}[X|\mathscr{G}] + (\mathbb{E}[X|\mathscr{G}] - Y) \rangle \\ &= \|X - \mathbb{E}[X|\mathscr{G}]\|_{L^2}^2 + \|\mathbb{E}[X|\mathscr{G}] - Y\|_{L^2}^2 \\ &\geq \|X - \mathbb{E}[X|\mathscr{G}]\|_{L^2}^2. \end{split}$$

That is

$$\mathbb{E}[(X - \mathbb{E}[X|\mathscr{G}])^2] = \inf_{Y \in L^2(\Omega, \mathscr{G}, \mathbf{P})} \mathbb{E}[(X - Y)^2]$$

Remark 2.3 For $X \in L^2(\Omega, \mathscr{G}, \mathbb{P})$, Hilbert projection theorem implies existence and uniqueness of $\mathbb{E}[X|\mathscr{G}]$.

2.3 Properties of conditional expectation

Proposition 2.4 (Basic properties) Let X and Y

- (1) For $a, b \in \mathbb{R}$, $\mathbb{E}[aX + bY|\mathscr{G}] = a\mathbb{E}[X|\mathscr{G}] + b\mathbb{E}[Y|\mathscr{G}];$
- (2) If $X \ge Y$, then $\mathbb{E}[X|\mathscr{G}] \ge \mathbb{E}[Y|\mathscr{G}];$ If $X \ge 0$, then $\mathbb{E}[X|\mathscr{G}] \ge 0;$ $\mathbb{E}[|X||\mathscr{G}] \ge |\mathbb{E}[X|\mathscr{G}]|;$
- (3) ξ is \mathscr{G} measurable $\Longrightarrow E[\xi|\mathscr{G}] = \xi$.
- (4) For every X is \mathscr{G} measurable, expectation of X and XY are exist, then $\mathbb{E}[XY|\mathscr{G}] = X\mathbb{E}[Y|\mathscr{G}];$
- (5) $\mathbb{E}[\mathbb{E}[X|\mathscr{G}]] = \mathbb{E}[X];$
- (6) Let $\mathscr{G}_1 \subset \mathscr{G}_2 \subset \mathscr{F}$, then $\mathbb{E}[\mathbb{E}[X|\mathscr{G}_1]|\mathscr{G}_2] = \mathbb{E}[\mathbb{E}[X|\mathscr{G}_2]|\mathscr{G}_1] = \mathbb{E}[X|\mathscr{G}_1]$.